Cart (Loading....) | Create Account
Close category search window

Detection of CPM signals in fast Rayleigh flat-fading using adaptive channel estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young, R.J. ; Mobile & Personal Commun. Group, Commun. Res. Centre, Ottawa, Ont., Canada ; Lodge, J.H.

Differential detection techniques, which are commonly used in fast fading environments, are characterized by an irreducible error rate that increases with fading rate. The main source of this error floor is the phase error introduced by the multiplicative fading process. The paper describes a detection technique for continuous phase modulation (CPM) that employs decision feedback carrier recovery and adaptive channel estimation. This receiver was evaluated by software simulation and the results show a substantial reduction of the error floor relative to that of differential detection. Furthermore, in additive white Gaussian noise (AWGN) channels, the adaptive nature of the receiver allows it to perform close to ideal coherent detection of differentially encoded phase shift keying (DE-CPSK)

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:44 ,  Issue: 2 )

Date of Publication:

May 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.