Cart (Loading....) | Create Account
Close category search window
 

Bandwidth and Q of antennas radiating TE and TM modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grimes, Dale M. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Grimes, Craig A.

The time-domain Poynting theorem is used to develop a general expression for the complex Poynting vector applicable to any single-frequency electromagnetic radiation field. It is found that the traditional complex Poynting vector applies to TE or TM fields, which we call simple fields, but that it does not apply to TE and TM fields, which we call compound fields. Either TE or TM fields are generated by most antennas. We show that previously imposed theoretical minimum size-to-wavelength ratios for useful antenna operation apply to simple fields but not always to compound ones. We conclude that electrically small, efficient compound antennas may be possible. As an example, the general form of the Poynting vector is used to analyze a compound source consisting of four antenna elements; idealized, superimposed, properly phased and oriented, coherent, electric and magnetic, dipole and quadrupole radiators. When properly driven, the antenna supports zero reactance on a circumscribing virtual surface of radius a, even in the limit as the radius-to-wavelength ratio of that surface goes to zero. The directivity pattern has a fixed 9 dB gain; the radiative Q of the surface is less and the bandwidth more by a factor of (ka)2, where k is the wave number, than for similarly sized radiators of simple fields

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:37 ,  Issue: 2 )

Date of Publication:

May 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.