By Topic

Investigation of ion behavior associated with anode-spot mode transition in vacuum arcs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toya, H. ; Mitsubishi Electr. Corp., Hyogo, Japan ; Hayashi, T. ; Sasao, H.

The ion behavior phenomenon associated with transitions of the anode discharge mode to the anode-spot mode is studied by measuring the wall ion current and by spectroscopic observation in vacuum arcs. The anode mode transfers when the wall ion current attains a certain magnitude that is independent of the cathode, but dependent on the anode. The ion-current function to the arc current increases when the arc current increases in the diffuse arc. Spectral-line intensity of Cu III emitted from the plasma in the anode region increases with an instantaneous arc current of a 5-kA peak (kAp) sinusoidal half-wave. These findings suggest an idea for the mode transition, that an ion generation region appears, and that an increase in the ion density produces a positive potential hump near the anode, which results in the negative anode voltage drop triggering the mode transition. After the mode transition, an arc current is found to reduce the ion current near the crest of a sinusoidal current in a copper arc. This appears to be significant for the arc on a small anode. The decrease in the ion current is attributed to the recombination of ions decelerated by anode vapor with electrons emitted from the hot spot on the anode

Published in:

Plasma Science, IEEE Transactions on  (Volume:16 ,  Issue: 3 )