By Topic

Towards the realization of an artificial tactile system: fine-form discrimination by a tensorial tactile sensor array and neural inversion algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
A. Caiti ; Dept. of Commun., Comput. & Syst. Sci., Genoa Univ., Italy ; G. Canepa ; D. De Rossi ; F. Germagnoli
more authors

This paper describes techniques and methodologies so far developed to investigate object fine-form discrimination by means of artificial tactile sensors. Sensor arrays, selectively sensitive to stress-tensor components and based on piezoelectric polymer technology, have been realized. Sensor output data are used to solve inverse elastic contact problems, by means of neural networks suitably trained to learn regularized inverse maps. Two possible neural network designs are considered: one is based on the multilayer perceptron trained with the standard backpropagation algorithm, and the other is based on the use of radial basis functions. In both cases, reconstruction of object shapes is demonstrated to be effective and robust with both simulated and real data

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:25 ,  Issue: 6 )