By Topic

Sensitivity analysis for probability assessments in Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. B. Laskey ; Dept. of Syst. Eng., George Mason Univ., Fairfax, VA, USA

When eliciting a probability model from experts, knowledge engineers may compare the results of the model with expert judgment on test scenarios, then adjust model parameters to bring the behavior of the model more in line with the experts intuition. This paper presents a methodology for analytic computation of sensitivity values in Bayesian network models. Sensitivity values are partial derivatives of output probabilities with respect to parameters being varied in the sensitivity analysis. They measure the impact of small changes in a network parameter on a target probability value or distribution. Sensitivity values can be used to focus knowledge elicitation effort on those parameters having the most impact on outputs of concern. Analytic sensitivity values are computed for an example and compared to sensitivity analysis by direct variation of parameters

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:25 ,  Issue: 6 )