By Topic

Adaptive control of a class of nonlinear discrete-time systems using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fu-Chuang Chen ; Dept. of Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; H. K. Khalil

Layered neural networks are used in a nonlinear self-tuning adaptive control problem. The plant is an unknown feedback-linearizable discrete-time system, represented by an input-output model. To derive the linearizing-stabilizing feedback control, a (possibly nonminimal) state-space model of the plant is obtained. This model is used to define the zero dynamics, which are assumed to be stable, i.e., the system is assumed to be minimum phase. A linearizing feedback control is derived in terms of some unknown nonlinear functions. A layered neural network is used to model the unknown system and generate the feedback control. Based on the error between the plant output and the model output, the weights of the neural network are updated. A local convergence result is given. The result says that, for any bounded initial conditions of the plant, if the neural network model contains enough number of nonlinear hidden neurons and if the initial guess of the network weights is sufficiently close to the correct weights, then the tracking error between the plant output and the reference command will converge to a bounded ball, whose size is determined by a dead-zone nonlinearity. Computer simulations verify the theoretical result

Published in:

IEEE Transactions on Automatic Control  (Volume:40 ,  Issue: 5 )