By Topic

The use of Huygens' equivalence principle for solving 3-D volume integral equation of scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cai-Cheng Lu ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Weng Cho Chew

A three-dimensional (3-D) version of the nested equivalent principle algorithm (NEPAL) is presented. In 3-D, a scatterer is first decomposed into N subscatterers. Then, spherical wave functions are used to represent the scattered field of the subscatterers. Subscatterers are divided into different levels of groups in a nested manner. For example, each group consists of eight subgroups, and each subgroup contains eight sub-subgroups, and so on. For each subgroup, the scattering solution is first solved and the number of subscatterers of the subgroup is then reduced by replacing the interior subscatterers with boundary subscatterers using Huygens' equivalence principle. As a result, when the subgroups are combined to form a higher level group, the group will have a smaller number of subscatterers. This process is repeated for each level, and in the last level, the number of subscatterers is proportional to that of boundary size of the scatterers. This algorithm has a computational complexity of O(N2) in three dimensions for all excitations and has the advantage of solving large scattering problems for multiple excitations. This is in contrast to Gaussian elimination which has a computational complexity of O(N3)

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:43 ,  Issue: 5 )