By Topic

Energy consumption modeling and optimization for SRAM's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Evans, R.J. ; IBM PC Co., Research Triangle Park, NC, USA ; Franzon, P.D.

The recent trends in portable computing technologies have established the need for energy efficient design strategies. To achieve minimum energy design goals, system designers need a technique to accurately model the energy consumption of their design alternatives without performing a full physical design and full-circuit simulation. This paper presents and compares five approaches for modeling the energy consumption of CMOS circuits. These five modeling approaches have been chosen to represent the various levels of model complexity and accuracy found in the current literature. These modeling approaches are applied to the energy consumption of SRAM's to provide examples of their use and to allow for the comparison of their modeling qualities. It was found that a mixed characterization model-using a CV2 prediction for digital subsections and fitted simulation results for the analog subsections-is satisfactory (within ±1 process variation) for predicting the absolute energy consumed per cycle. This same model is also very good (within 2%) for predicting an optimum organization for the internal structures of the SRAM. Several common architectures and circuit designs for SRAM's are analyzed with these models. This analysis shows that global, rather than local improvements, produce the largest energy savings

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:30 ,  Issue: 5 )