By Topic

Optimal reconfiguration algorithms for real-time fault-tolerant processor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Libeskind-Hadas, Ran ; Dept. of Comput. Sci., Harvey Mudd Coll., Claremont, CA, USA ; Shrivastava, N. ; Melhem, R.G. ; Liu, C.L.

In this paper we consider the problem of reconfiguring processor arrays subject to computational loads that alternate between two modes. A strict mode is characterized by a heavy computational load and severe constraints on response time while a relaxed mode is characterized by a relatively light computational load and relaxed constraints on response time. In the strict mode, reconfiguration is performed by a distributed local algorithm in order to achieve fast recovery from faults. In the relaxed mode, a global reconfiguration algorithm is used to restore the system to a state that maximizes the probability that future faults occurring in subsequent strict modes will be repairable. Several new results are given for this problem. Efficient reconfiguration algorithms are described for a number of general classes of architectures. These general algorithms obviate the need for architecture-specific algorithms for architectures in these classes. We show that it is unlikely that similar algorithms can be obtained for related classes of architectures since the reconfiguration problem for these classes is NP-complete. Finally, a general approximation algorithm is described that can be used for any architecture. Experimental results are given, suggesting that our algorithms are very effective

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 5 )