By Topic

Performance and scalability of preconditioned conjugate gradient methods on parallel computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, A. ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; Kumar, V. ; Sameh, A.

This paper analyzes the performance and scalability of an iteration of the preconditioned conjugate gradient algorithm on parallel architectures with a variety of interconnection networks, such as the mesh, the hypercube, and that of the CM-5 parallel computer. It is shown that for block-tridiagonal matrices resulting from two-dimensional finite difference grids, the communication overhead due to vector inner products dominates the communication overheads of the remainder of the computation on a large number of processors. However, with a suitable mapping, the parallel formulation of a PCG iteration is highly scalable for such matrices on a machine like the CM-5 whose fast control network practically eliminates the overheads due to inner product computation. The use of the truncated Incomplete Cholesky (IC) preconditioner can lead to further improvement in scalability on the CM-5 by a constant factor,as a result, a parallel formulation of the PCG algorithm with IC preconditioner may execute faster than that with a simple diagonal preconditioner even if the latter runs faster in a serial implementation

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 5 )