Cart (Loading....) | Create Account
Close category search window
 

Unified integration of explicit knowledge and learning by example in recurrent networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frasconi, P. ; Dept. of Syst. & Inf., Firenze Univ., Italy ; Gori, M. ; Maggini, M. ; Soda, G.

Proposes a novel unified approach for integrating explicit knowledge and learning by example in recurrent networks. The explicit knowledge is represented by automaton rules, which are directly injected into the connections of a network. This can be accomplished by using a technique based on linear programming, instead of learning from random initial weights. Learning is conceived as a refinement process and is mainly responsible for uncertain information management. We present preliminary results for problems of automatic speech recognition

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

Apr 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.