By Topic

Observation of the electrorheological effect of silicone oil/polymer particles suspension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yatsuzuka, K. ; Dept. of Electr. Eng., Yamagata Univ., Yonezawa, Japan ; Miura, K. ; Kuramoto, N. ; Asano, K.

A liquid insulator that suspends small particles is one of the electrorheological fluids (ERF) whose apparent viscosity becomes larger under an electric field because of the formation of particle chains. Since many possible applications of ERF are expected, the development of a more practical ERF is required. We have investigated the ER effect of silicone oil in which small particles are suspended. Silica particles, silica particles coated by conductive polymer film, and polymer particles (microcrystalline cellulose), with a diameter between 5~100 μm, are investigated in order to clarify the difference between suspending materials. To measure the ER effect, a rotational viscometer was constructed. It became clear that the shear stress for cellulose particles is much stronger than that for other particles because of its peculiar particle chain formation due to the particle shape

Published in:

Industry Applications, IEEE Transactions on  (Volume:31 ,  Issue: 3 )