By Topic

Transposing conductors in signal buses to reduce nearest-neighbor crosstalk

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Voelker, R.H. ; Dept. of Electr. Eng., Nebraska Univ., Lincoln, NE, USA

A conductor layout technique is described that reduces nearest-neighbor crosstalk for multiconductor signal buses with applications in high-speed digital and microwave pulse integrated circuits. Periodic transposition of conductors in a bus increases the average spacing of formerly nearest neighbors and thus decreases their capacitive and inductive coupling compared with ordinary parallel conductors. A conductor transposition pattern is evaluated for crosstalk, propagation delay, and chip area. SPICE simulations demonstrate that conductor transposition reduces, in certain situations, near- and far-end nearest-neighbor crosstalk by roughly 40% compared with parallel conductors. Quantitative guidelines are developed for reducing nearest-neighbor crosstalk in a transposed five-conductor bus, including effects of signal rise time, source resistance, load capacitance, and bus length

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 5 )