Cart (Loading....) | Create Account
Close category search window

On the second generalized Hamming weight of the dual code of a double-error-correcting binary BCH code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Changshik Shim ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; Habong Chung

The generalized Hamming weight of a linear code is a new notion of higher dimensional Hamming weights. Let C be an [n,k] linear code and D be a subcode. The support of D is the cardinality of the set of not-always-zero bit positions of D. The rth generalized Hamming weight of C, denoted by dr(C), is defined as the minimum support of an r-dimensional subcode of C. It was shown by Wei (1991) that the generalized Hamming weight hierarchy of a linear code completely characterizes the performance of the code on the type II wire-tap channel defined by Ozarow and Wyner (1984). In the present paper the second generalized Hamming weight of the dual code of a double-error-correcting BCH code is derived and the authors prove that except for m=4, the second generalized Hamming weight of [2m-1, 2m]-dual BCH codes achieves the Griesmer bound

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 3 )

Date of Publication:

May 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.