By Topic

The context-tree weighting method: basic properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Willems, F.M.J. ; Dept. of Electr. Eng., Eindhoven Univ. of Technol., Netherlands ; Shtarkov, Y.M. ; Tjalkens, T.J.

Describes a sequential universal data compression procedure for binary tree sources that performs the “double mixture.” Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding distribution for tree sources with an unknown model and unknown parameters. Computational and storage complexity of the proposed procedure are both linear in the source sequence length. The authors derive a natural upper bound on the cumulative redundancy of the method for individual sequences. The three terms in this bound can be identified as coding, parameter, and model redundancy, The bound holds for all source sequence lengths, not only for asymptotically large lengths. The analysis that leads to this bound is based on standard techniques and turns out to be extremely simple. The upper bound on the redundancy shows that the proposed context-tree weighting procedure is optimal in the sense that it achieves the Rissanen (1984) lower bound

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 3 )