By Topic

A coordinated location policy for load sharing in hypercube-connected multicomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shin, K.G. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Chang, Y.-C.

Uneven task arrivals in a hypercube-connected multicomputer may temporarily overload some nodes while leaving others underloaded. This problem can be solved or alleviated by load sharing (LS); that is, some of the tasks arriving at overloaded nodes, called overflow tasks, are transferred to underloaded nodes. One important issue in LS is to locate underloaded nodes to which the overflow tasks can be transferred. This is termed the location policy. Any efficient location policy should distribute the overflow tasks to the entire system instead of `dumping' them on a few underloaded nodes. To reduce the overhead for collecting state information and transferring tasks, each node is required to maintain the state information of only those nodes in its proximity, called a buddy set. Several location policies-random probing, random selection, preferred lists, and bidding algorithm-are analyzed and compared for hypercube-connected multicomputer systems. Under the random-selection and preferred-list policies, an overloaded node can select, without probing other nodes, an underloaded node within its buddy set, while under the random probing policy and the bidding algorithm the overloaded node needs to probe other nodes before transferring the overflow task. Task collision(s) is said to occur if two or more overflow tasks are transferred (almost) simultaneously to the same underloaded node. The performances of these location policies are analyzed and compared in terms of the average number of task collisions. Our analysis shows that use of preferred lists allows the overflow tasks to be shared more evenly throughout the entire hypercube than the other two location policies

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 5 )