By Topic

Effects of two-way decorrelation on radar detection in scintillation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dana, R.A. ; Mission Res. Corp., Santa Barbara, CA, USA

A 3 dB gain in average signal-to-noise ratio of a monostatic radar operating in scintillation has recently been established both theoretically and observationally. The statistics of two-way scintillation are derived here for the case where the uplink and downlink both experience Rayleigh fading and where there is arbitrary correlation between the scintillation on the two paths. These statistics are then used to compute radar detection curves. A surprising result is obtained. The probability of detection is only weakly dependent (for P D in the range 0.1 to 0.9) on the degree of uplink-downlink correlation in the scintillation when the average (nonfading) signal-to-noise ratio is constant and when proper account is taken of the change in mean power between the monostatic and bistatic cases. Much larger differences are seen in the detection curves with scintillation compared with nonfading curves (for P D equal to 0.7 this scintillation loss is about 7 dB). Thus the difference in detection performance of monostatic and bistatic radars is determined primarily by the difference in the radar cross section (RCS) of the target for the two cases.<>

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:31 ,  Issue: 2 )