By Topic

Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
N. J. Kasdin ; W.W. Hansen Exp. Phys. Lab., Stanford Univ., CA

This paper discusses techniques for generating digital sequences of noise which simulate processes with certain known properties or describing equations. Part I of the paper presents a review of stochastic processes and spectral estimation (with some new results) and a tutorial on simulating continuous noise processes with a known autospectral density or autocorrelation function. In defining these techniques for computer generating sequences, it also defines the necessary accuracy criteria. These methods are compared to some of the common techniques for noise generation and the problems, or advantages, of each are discussed. Finally, Part I presents results on simulating stochastic differential equations. A Runge-Kutta (RK) method is presented for numerically solving these equations. Part II of the paper discusses power law, or 1/fα, noises. Such noise processes occur frequently in nature and, in many cases, with nonintegral values for α. A review of 1/f noises in devices and systems is followed by a discussion of the most common continuous 1/f noise models. The paper then presents a new digital model for power law noises. This model allows for very accurate and efficient computer generation of 1/fα noises for any α. Many of the statistical properties of this model are discussed and compared to the previous continuous models. Lastly, a number of approximate techniques for generating power law noises are presented for rapid or real time simulation

Published in:

Proceedings of the IEEE  (Volume:83 ,  Issue: 5 )