By Topic

Human and machine recognition of faces: a survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Chellappa ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; C. L. Wilson ; S. Sirohey

The goal of this paper is to present a critical survey of existing literature on human and machine recognition of faces. Machine recognition of faces has several applications, ranging from static matching of controlled photographs as in mug shots matching and credit card verification to surveillance video images. Such applications have different constraints in terms of complexity of processing requirements and thus present a wide range of different technical challenges. Over the last 20 years researchers in psychophysics, neural sciences and engineering, image processing analysis and computer vision have investigated a number of issues related to face recognition by humans and machines. Ongoing research activities have been given a renewed emphasis over the last five years. Existing techniques and systems have been tested on different sets of images of varying complexities. But very little synergism exists between studies in psychophysics and the engineering literature. Most importantly, there exists no evaluation or benchmarking studies using large databases with the image quality that arises in commercial and law enforcement applications In this paper, we first present different applications of face recognition in commercial and law enforcement sectors. This is followed by a brief overview of the literature on face recognition in the psychophysics community. We then present a detailed overview of move than 20 years of research done in the engineering community. Techniques for segmentation/location of the face, feature extraction and recognition are reviewed. Global transform and feature based methods using statistical, structural and neural classifiers are summarized

Published in:

Proceedings of the IEEE  (Volume:83 ,  Issue: 5 )