By Topic

Mining sequential patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Agrawal, R. ; IBM Almaden Res. Center, San Jose, CA, USA ; Srikant, R.

We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empirically evaluate their performance using synthetic data. Two of the proposed algorithms, AprioriSome and AprioriAll, have comparable performance, albeit AprioriSome performs a little better when the minimum number of customers that must support a sequential pattern is low. Scale-up experiments show that both AprioriSome and AprioriAll scale linearly with the number of customer transactions. They also have excellent scale-up properties with respect to the number of transactions per customer and the number of items in a transaction

Published in:

Data Engineering, 1995. Proceedings of the Eleventh International Conference on

Date of Conference:

6-10 Mar 1995