By Topic

Coupled modelling of blood flow and arterial wall interactions by the finite element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A coupled treatment of blood/arterial wall interactions is presented here. The model solves three different types of equations: (1) the full time-dependent Navier-Stokes equations governing the flow of blood, (2) the linear-elastic small-displacement stress equations for the arterial wall, and (3) the mesh displacement equations. These equations are discretised using the Galerkin finite element method. The coupled model is able to predict the time-dependent displacement and stress fields within the solid wall, as well as the full flow field. To demonstrate the validity of the approach, a number of sample calculations have been performed showing good agreement with available analytical solutions. The model is then applied to physiologically realistic arterial flow situations

Published in:

Computers in Cardiology 1993, Proceedings.

Date of Conference:

5-8 Sep 1993