By Topic

A computational model of neural contour processing: Figure-ground segregation and illusory contours

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heitger, F. ; Commun. Technol. Lab., Swiss Federal Inst. of Technol. ETH, Zurich, Switzerland ; von der Heydt, R.

The detection of occluding contours in images of 3-D scenes is a fundamental problem of vision. The authors present a computational model of contour processing that was suggested by neurophysiological recordings from the monkey visual cortex. The model uses convolutions and nonlinear operations, but no feedback loops. Contours are defined by the local maxima of the responses of a contour operator that sums a representation of contrast borders and a grouping signal. The grouping consists of convolving a representation of key-points, such as T-junctions, corners, and line ends, with a set of orientation selective kernels, and a nonlinear pairing operation. The grouping scheme is selective based on whether the configuration of key-points is consistent with the interpretation of occlusion. The resulting contour representation includes an indicator of figure-ground direction. It is shown that the model reproduces illusory contours in accurate agreement with perception and generates representations of occluding contours on images of natural scenes that are more complete and less cluttered by spurious connections of foreground and background than those obtained by conventional edge detection operators

Published in:

Computer Vision, 1993. Proceedings., Fourth International Conference on

Date of Conference:

11-14 May 1993