By Topic

Recovering reflectance and illumination in a world of painted polyhedra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Sinha ; MIT, Cambridge, MA, USA ; E. Adelson

To be immune to variations in illumination, a vision system needs to be able to decompose images into their illumination and surface reflectance components. Most computational studies thus far have been concerned with strategies for solving the problem in the restricted domain of 2-D Mondrians. This domain has the simplifying characteristic of permitting discontinuities only in the reflectance distribution while the illumination distribution is constrained to vary smoothly. Such approaches prove inadequate in a 3-D world of painted polyhedra which allows for the existence of discontinuities in both the reflectance and illumination distributions. The authors propose a two-stage computational strategy for interpreting images acquired in such a domain. The first stage attempts to use simple local gray-level junction analysis to classify the observed image edges into the illumination or reflectance categories. Subsequent processing verifies the global consistency of these local inferences while also reasoning about the 3-D structure of the object and the illumination source direction

Published in:

Computer Vision, 1993. Proceedings., Fourth International Conference on

Date of Conference:

11-14 May 1993