By Topic

On the problem of correspondence in range data and some inelastic uses for elastic nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joshi, A. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Chia-Hoang Lee

In this work, the authors propose a novel method to obtain correspondence between range data across image frames using neural like mechanisms. The method is computationally efficient and tolerant of noise and missing points. Elastic nets, which evolved out of research into mechanisms to establish ordered neural projections between structures of similar geometry, are used to cast correspondence as an optimization problem. This formulation is then used to obtain approximations to the motion parameters under the assumption of rigidity (inelasticity). These parameter scan be used to recover correspondence. Experimental results are presented to establish the veracity of the scheme and the method is compared to earlier attempts in this direction

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 3 )