By Topic

Generating compact code from dataflow specifications of multirate signal processing algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. S. Bhattacharyya ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; J. T. Buck ; Soonhoi Ha ; E. A. Lee

Synchronous dataflow (SDF) semantics are well-suited to representing and compiling multirate signal processing algorithms. A key to this match is the ability to cleanly express iteration without overspecifying the execution order of computations, thereby allowing efficient schedules to be constructed. Due to limited program memory, it is often desirable to translate the iteration in an SDF graph into groups of repetitive firing patterns so that loops can be constructed in the target code. This paper establishes fundamental topological relationships between iteration and looping in SDF graphs, and presents a scheduling framework that provably synthesizes the most compact looping structures for a large class of practical SDF graphs. By modularizing different components of the scheduling framework, and establishing their independence, we show how other scheduling objectives, such as minimizing data buffering requirements or increasing the number of data transfers that occur in registers, can be incorporated in a manner that does not conflict with the goal of code compactness

Published in:

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications  (Volume:42 ,  Issue: 3 )