By Topic

Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tugnait, J.K. ; Dept. of Electr. Eng., Auburn Univ., AL, USA

We consider the problem of estimating the parameters of a stable (stationary), scalar ARMA(p,q) signal model driven by an i.i.d. non-Gaussian sequence. The driving noise sequence is not observed. The signal is allowed to be nonminimum phase and/or noncausal (i.e., poles may lie both inside as well as outside the unit circle). We address the problem of parameter identifiability given the higher order cumulants of the signal on a finite set of lags. The sufficient set of lags required to achieve parameter identifiability is the smallest to date. The sufficient conditions for parameter identifiability are also the least restrictive to date. We also propose a frequency-domain approach for time-domain, nonlinear optimization of a quadratic cumulant matching criterion. Illustrative computer simulation results are presented

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 4 )