By Topic

Magnetosphere-ionosphere interactions as a key to the plasma Universe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. -G. Falthammar ; Alfven Lab., R. Inst. of Technol., Stockholm, Sweden ; N. Brenning

Almost all known matter in the Universe is in a state, the plasma state, that is rare on Earth, and whose physical properties are still incompletely understood. Its complexity is such that a reliable understanding must build on empirical knowledge. While laboratory experiments are still an important source of such knowledge, the Earth's magnetosphere-ionosphere system, made accessible by space technology, vastly widens the parameter ranges in which plasma phenomena can be studied. This system contains all three main categories of plasma present in the Universe. Furthermore, the interaction between the magnetosphere and the ionosphere excites a wealth of plasma physical phenomena of fundamental importance. These include, among others, formation of magnetic-field aligned electric fields, acceleration of charged particles, release of magnetically stored energy, formation of filamentary and cellular structures, as well as unexpected chemical separation processes. What has been learned, and what still remains to be learned, from study of the magnetosphere-ionosphere system should therefore provide a much improved basis for understanding of our Universe

Published in:

IEEE Transactions on Plasma Science  (Volume:23 ,  Issue: 1 )