Cart (Loading....) | Create Account
Close category search window
 

Sensitivity and uncertainty analysis of Markov-reward models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haverkort, B.R. ; Dept. of Comput. Sci., Twente Univ., Enschede, Netherlands ; Meeuwissen, A.M.H.

Markov-reward models are often used to analyze the reliability and performability of computer systems. One difficult problem therein is the quantification of the model parameters. If they are available, e.g., from measurement data collected by manufacturers, they are: (a) generally regarded as confidential; and (b) difficult to access. This paper addresses two ways of dealing with uncertain parameters: (1) sensitivity analysis, and (2) Monte Carlo uncertainty analysis. Sensitivity analysis is relatively fast and cheap but it correctly describes only the local behavior of the model outcome uncertainty as a result of the model parameter uncertainties. When the uncertain parameters are dependent, sensitivity analysis is difficult. The authors extend the classical sensitivity analysis so that the results conform better to those of the Monte Carlo uncertainty analysis. Monte Carlo uncertainty analysis provides a global view. Since it can include parameter dependencies, it is more accurate than sensitivity analysis. By two examples they demonstrate both approaches and illustrate the effects uncertainty and dependence can have

Published in:

Reliability, IEEE Transactions on  (Volume:44 ,  Issue: 1 )

Date of Publication:

Mar 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.