By Topic

Modeling student knowledge with self-organizing feature maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harp, S.A. ; Honeywell Technol. Center, Minneapolis, MN, USA ; Samad, T. ; Villano, M.

The paper describes a novel application of neural networks to model the behavior of students in the context of an intelligent tutoring system. Self-organizing feature maps are used to capture the possible states of student knowledge from an existing test database. The trained network implements a universal student knowledge model that is compatible with knowledge space theory approaches to student assessment and computer aided instruction. The student model can be applied to rapidly assess the knowledge of any given student, and chart a path from lower to higher states of expertise. The authors illustrate the concept on an aircraft fuel management domain, demonstrating its noise-tolerance and insensitivity to feature map parameter values. An approach to determining the correct feature map size is also described

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:25 ,  Issue: 5 )