Cart (Loading....) | Create Account
Close category search window
 

Three architectural models for compiler-controlled speculative execution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

To effectively exploit instruction level parallelism, the compiler must move instructions across branches. When an instruction is moved above a branch that it is control dependent on, it is considered to be speculatively executed since it is executed before it is known whether or not its result is needed. There are potential hazards when speculatively executing instructions. If these hazards can be eliminated, the compiler can more aggressively schedule the code. The hazards of speculative execution are outlined in this paper. Three architectural models: restricted, general, and boosting, which have increasing amounts of support for removing these hazards are discussed. The performance gained by each level of additional hardware support is analyzed using the IMPACT C compiler which performs superblock scheduling for superscalar and superpipelined processors

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 4 )

Date of Publication:

Apr 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.