Cart (Loading....) | Create Account
Close category search window

Scattering from finite by infinite arrays of slots in a thin conducting wedge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Skinner, J.P. ; Dept. of Electr. & Comput. Eng., Wright Res. & Dev. Center, Wright-Patterson AFB, OH, USA ; Whaley, C.C., Jr. ; Chattoraj, T.K.

The radar scattering from a finite by infinite array of slots cut into a thin conducting wedge is considered. The wedge is formed by taking a thin ground plane and applying a bend to create a sharp edge which is parallel to the columns of slots in the infinite axis. Results are derived for thin linear slots whose major axes are either parallel or perpendicular to the edge. A hybrid moment method and geometrical theory of diffraction approach is used, with magnetic current expansion functions defined using Floquet's theorem on single columns of slots. Predictions generally agree with scattering measurements of finite by finite array physical models with monostatic patterns taken in a plane orthogonal to the sharp edge

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:43 ,  Issue: 4 )

Date of Publication:

Apr 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.