By Topic

A decomposition approach to forecasting electric power system commercial load using an artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

We use a multilayer neural network with a backpropagation algorithm to forecast the commercial sector load portion resulting from decomposing the system load of the Nova Scotia Power Inc. system. To minimize the effect of weather on the forecast of the commercial load, it is further decomposed into four autonomous sections of six hour durations. The optimal input for a training set is determined based on the sum of the squared residuals of the predicted loads. The input patterns are made up of the immediate past four or five hours load and the output is the fifth or the sixth hour load. The results obtained using the proposed approach provide evidence that in the absence of some influential variables such as temperature, a careful selection of training patterns will enhance the performance of the artificial neural network in predicting the power system load

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:7 )

Date of Conference:

27 Jun-2 Jul 1994