By Topic

Feature selection with distinction sensitive learning vector quantisation and genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Flotzinger, D. ; Dept. of Med. Inf., Graz Univ. of Technol., Austria ; Pregenzer, M. ; Pfurtscheller, G.

Two feature selection methods, a distinction-sensitive learning vector quantizer (DSLVQ) and a genetic algorithm (GA) approach, are applied to multichannel electroencephalogram (EEG) patterns. It is shown how DSLVQ adjusts the influence of different input features according to their relevance for classification. Using a weighted distance function DSLVQ thereby performs feature selection along with classification. The results are compared with those of a GA which minimizes the number of features taken for classification while maximizing classification performance. The multichannel EEG patterns used in this paper stem from a study for the construction of a brain-computer interface, which is a system designed for handicapped persons to help them use their EEG for control of their environment. For such a system, reliable EEG classification, i.e. differentiation of several distinctive EEG patterns, is vital. In practice the number of electrodes for EEG recordings can be high (up to 56 and more) and different frequency bands and time intervals for each electrode can be used for classification simultaneously. This shows the importance of methods automatically selecting the most distinctive out of a number of available features

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:6 )

Date of Conference:

27 Jun- 2 Jul 1994