By Topic

Anomaly detection by neural network models and statistical time series analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Kozma ; Dept. of Nucl. Eng., Tohoku Univ., Sendai, Japan ; M. Kitamura ; M. Sakuma ; Y. Yokoyama

The problem of detecting weak anomalies in temporal signals is addressed. The performance of statistical methods utilizing the evaluation of the intensity of time-dependent fluctuations is compared with the results obtained by a layered artificial neural network model. The desired accuracy of the approximation by the neural network at the end of the learning phase has been estimated by analyzing the statistics of the learning data. The application of the obtained results to the analysis of actual anomaly data from a nuclear reactor showed that neural networks can identify the onset of anomalies with a reasonable success, while usual statistical methods were unable to make distinction between normal and abnormal patterns

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:5 )

Date of Conference:

27 Jun-2 Jul 1994