By Topic

Myoelectric signal recognition using fuzzy clustering and artificial neural networks in real time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Del Boca ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL, USA ; D. C. Park

Application of EMG-controlled functional neuromuscular stimulation to a denervated muscle depends largely on the successful discrimination of the myoelectric signal (MES) by which the subject desires to execute control over the impeded movement. This can be achieved by an adaptive and flexible interface that is robust regardless of electrode location, strength of remaining muscle activity or even personal conditions. A real-time application of an artificial neural network that can accurate recognize the MES signature is proposed in this paper. MES features are first extracted through Fourier analysis and clustered using the fuzzy c-means algorithm. Data obtained by this unsupervised learning technique are then automatically targeted and presented to a multilayer perceptron type neural network. For real-time operation, a digital signal processor operates over the resulting set of weights and maps the incoming signal to the stimulus control domain. Results show a highly accurate discrimination of the control signal over interference patterns

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:5 )

Date of Conference:

27 Jun-2 Jul 1994