By Topic

Spatiotemporal computation with a general purpose analog neural computer: real-time visual motion estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Etienne-Cummings ; Dept. of Electr. Eng., Pennsylvania Univ., Philadelphia, PA, USA ; C. Donham ; J. Van der Spiegel ; P. Mueller

An analog neural network implementation of spatiotemporal feature extraction for real-time visual motion estimation is presented. Visual motion can be represented as an orientation in the space-time domain. Thus, motion estimation translates into orientation detection. The spatiotemporal orientation detector discussed is based on Adelson and Bergen's model with modifications to accommodate the computational limitations of hardware analog neural networks. The analog neural computer used here has the unique property of offering temporal computational capabilities through synaptic time-constants. These time-constants are crucial for implementing the spatiotemporal filters. Analysis, implementation and performance of the motion filters are discussed. The performance of the neural motion filters is found to be consistent with theoretical predictions and the real stimulus motion

Published in:

Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on  (Volume:3 )

Date of Conference:

27 Jun-2 Jul 1994