By Topic

Optimal generation scheduling with ramping costs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, C. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Shahidehpour, S.M.

In this paper, a decomposition method is proposed which relates the unit ramping process to the cost of fatigue effect in the generation scheduling of thermal systems. The objective of this optimization problem is to minimize the system operation cost, which includes the fuel cost for generating the required electrical energy and starting up decommitted units, as well as the rotor depreciation during ramping processes, such as starting up, shutting down, loading, and unloading. According to the unit fatigue index curves provided by generator manufacturers, fixed unit ramping-rate limits, which have been used by previous studies, do not reflect the physical changes of generator rotors during the ramping processes due to the fatigue effect. By introducing ramping costs, the unit on/offstates can be determined more economically by the proposed method. The Lagrangian relaxation method is proposed for unit commitment and economic dispatch, in which the original problem is decomposed into several subproblems corresponding to the optimization process of individual units. The network model is employed to represent the dynamic process of searching for the optimal commitment and generation schedules of a unit over the entire study time span. The experimental results for a practical system demonstrate the effectiveness of the proposed approach in optimizing the power system generation schedule

Published in:

Power Systems, IEEE Transactions on  (Volume:10 ,  Issue: 1 )