Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: a Monte Carlo investigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pan, T.-S. ; Dept. of Nucl. Med., Massachusetts Univ. Med. Center, Worcester, MA, USA ; King, M.A. ; de Vries, D.J. ; Ljungberg, M.

In SPECT imaging of the chest, non-uniform attenuation correction requires use of a patient specific attenuation map. Such a map can be obtained by estimating the regions occupied by (1) the lungs and (2) the soft tissue and bones, and then assigning values of the attenuation coefficient to each region. The authors propose a method to segment such regions from the Compton scatter and photopeak window SPECT slices of Tc-99m Sestamibi studies. The Compton scatter slices are used to segment the body outline, and to estimate the region of the lungs with the anatomic information on the back bone and sternum locations from the photopeak window slices. To investigate the accuracy of using Compton scatter slices in estimating the regions of the body and the lungs, a Monte Carlo SPECT simulation of an anthropomorphic phantom with an activity distribution and noise characteristics similar to patient data was performed. Different activities were simulated in the lungs to study the influence of lung uptake. Energy windows of various widths were simulated for use in locating a suitable Compton scatter window for imaging. In a separate simulation, the map of the probability of scatter interactions (up to third order) from photons originating at a point within the heart was recorded to allow investigation of the contrast provided by the difference in density between the lungs and surrounding bones and soft tissue. The results demonstrated that (1) sufficient contrast can be derived from Compton scatter data for segmentation of the lungs; (2) accuracy of determination of body and lung regions of about 99% and 89%, respectively, can be achieved and (3) a wide energy window away from the photopeak window for recording the scattered events is preferred for the segmentation of lungs

Published in:

Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record.

Date of Conference:

31 Oct-6 Nov 1993