Cart (Loading....) | Create Account
Close category search window
 

A fast parallel algorithm for routing unicast assignments in Benes networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, Ching-Yi ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Oruc, A.Y.

This paper presents a new parallel algorithm for routing unicast (one-to-one) assignments in Benes networks. Parallel routing algorithms for such networks were reported earlier, but these algorithms were designed primarily to route permutation assignments. The routing algorithm presented in this paper removes this restriction without an increase in the order of routing cost or routing time. We realize this new routing algorithm on two different topologies. The algorithm routes a unicast assignment involving O(k) pairs of inputs and outputs in O(lg 2 k+lg n) time on a completely connected network of n processors and in O(lg4 k+lg2 k lg n) time on an extended shuffle-exchange network of n processors. Using O(n lg n) professors, the same algorithm can be pipelined to route α unicast assignments each involving O(k) pairs of inputs and outputs, in O(lg2 k+lg n+(α-1) lg k) time on a completely connected network and in O(lg4 k+lg2 k lg n+(α-1)(lg 3 k+lg k lg n)) time on the extended shuffle-exchange network. These yield an average routing time of O(lg k) in the first case, and O(lg3 k+1g k lg n) in the second case, for all α⩾lg n. These complexities indicate that the algorithm given in this paper is as fast as Nassimi and Sahni's algorithm for unicast assignments, and with pipelining, it is faster than the same algorithm at least by a factor of O(lg n) on both topologies. Furthermore, for sparse assignments, i.e., when k=O(1), it is the first algorithm which has an average routing time of O(1g n) on a topology with O(n) links

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

Mar 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.