By Topic

Optimal simulation of full binary trees on faulty hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, B.M.Y. ; Dept. of Comput. Sci., Hong Kong Univ., Hong Kong ; Chin, F.Y.L. ; Chung-Keung Poon

We study the problem of running full binary tree based algorithms on a hypercube with faulty nodes. The key to this problem is to devise a method for embedding a full binary tree into the faulty hypercube. Based on a novel embedding strategy, we present two results for embedding an (n-1) tree fa full binary tree with 2n-1 nodes) into an n-cube (a hypercube with 2n nodes) with unit dilation and load. For the problem where the root of the tree must be mapped to a specified hypercube node (specified root embedding problem), we show that up to n-2 (node or edge) faults can be tolerated. This result is optimal in the following sense: 1) it is time-optimal, 2) (n-1)-tree is the largest fall binary tree that can be embedded in an n-cube, and 3) n-2 faults Is the maximum number of worst-case faults that can be tolerated in the specified root problem. Furthermore, we also show that any algorithm for this problem cannot be totally recursive in nature. For the problem where the root can be mapped to any nonfaulty hypercube node (variable root embedding problem), we show that up to 2n-3-[log n] faults can be tolerated. Thus we have improved upon the previous result of n-1-[log n]. In addition, we show that the algorithm for the variable root embedding problem is optimal within a class of algorithms called recursive embedding algorithms as far as the number of tolerable faults is concerned. Finally, we show that when an O(1/√n) fraction of nodes in the hypercube are faulty, it is not always possible to have an O(1)-load variable root embedding no matter how large the dilation is

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )