By Topic

Advanced array optimizations for high performance functional languages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cann, D.C. ; Software Div., Cray Comput. Corp., Colorada Springs, CO, USA ; Evripidou, P.

We discuss and evaluate three optimizations for reducing memory management overhead and data copying costs in SISAL 1.2 programs that build arrays. The first, called framework preconstruction, eliminates superfluous allocate-deallocate sequences in cyclic computations. The second, called aggregate storage subsumption, reduces the management overhead for compound array components. The third, called predictive storage preallocation, eliminates superfluous data copying in filtered array constructions and simplifies their parallelization. We have added all three optimizations to the Optimizing SISAL Compiler with rewarding improvements in SISAL program performance on vector-parallel machines such as those built by Cray Computer Corporation, Convex, and Cray Research

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )