By Topic

Artificial neural network power system stabilizers in multi-machine power system environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang, Y. ; Dept. of Electr. Eng., Calgary Univ., Alta., Canada ; Malik, O.P. ; Chen, G.P.

The effectiveness of an artificial neural network (ANN), functioning as a power system stabilizer (PSS), in damping multi-mode oscillations in a five-machine power system environment is investigated in this paper. Accelerating power of the generating unit is used as the input to the ANN PSS. The proposed ANN PSS using a multilayer neural network with error-backpropagation training method was trained over the full working range of the generating unit with a large variety of disturbances. The ANN was trained to memorize the reverse input/output mapping of the synchronous machine. Results show that the proposed ANN PSS can provide good damping for both local and inter-area modes of oscillations

Published in:

Energy Conversion, IEEE Transactions on  (Volume:10 ,  Issue: 1 )