By Topic

Transient simulation of heterojunction photodiodes-part II: analysis of resonant cavity enhanced photodetectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Unlu, M.S. ; Dept. of Electr. Comput. & Syst. Eng., Boston Univ., MA, USA ; Onat, B.M. ; Leblebici, Y.

The high-speed response properties of resonant cavity enhanced (RCE) photodetectors have been investigated. The limitations on the high-speed performance of photodiodes and the advantages of RCE-detection are discussed. Transient response of heterojunction photodiodes under pulsed optical illumination has been simulated using the method described in Part I. Results on conventional AlGaAs/GaAs and RCE GaAs/InGaAs heterojunction p-i-n photodiodes are presented. For small area detectors, almost 50% bandwidth improvement along with a two-fold increase in efficiency is predicted for RCE devices over optimized conventional photodiodes. A nearly three-fold enhancement in the bandwidth-efficiency product was shown

Published in:

Lightwave Technology, Journal of  (Volume:13 ,  Issue: 3 )