By Topic

A hybrid phase shifter circuit based on TlCaBaCuO superconducting thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Subramanyam ; Microwave Electron. Lab., Cincinnati Univ., OH, USA ; V. J. Kapoor ; K. B. Bhasin

A superconductor-semiconductor hybrid reflection-type phase shifter circuit has been designed, fabricated, and characterized for 180° phase bit with center frequency of 4 GHz and bandwidth of 0.5 GHz for operation at 77 K. All of the passive components of the phase shifter circuit such as input/output feed lines, 3 dB Lange coupler, impedance matching networks, and transmission lines consisted of thallium based superconducting TlCaBaCuO thin films of 4000 Å thickness on lanthanum aluminate substrate. Metal-Schottky field-effect-transistors (MESFET's) on GaAs semiconductor were used as active devices for switching action (on-state and off-state) in the phase shifter circuit. The phase shift and insertion losses were investigated as a function of frequency from 3.6 to 4.6 GHz at 77 K. The circuit exhibited a fairly flat response of 180° phase shift with a maximum deviation of less than 2° and a maximum insertion loss of 2 dB for on-state and 2.2 dB for off-state conditions over 0.5 GHz bandwidth at 4 GHz. The insertion losses were also fairly flat within the bandwidth. The insertion losses were constant between 50 and 80 K, giving the circuit a large range of operation at or below 77 K. The performance of this circuit as compared to a gold microstrip-semiconductor circuit designed identically was superior by a factor of 1.5, and may be due to lower conductor losses and lower surface resistance in the superconducting microstrips

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:43 ,  Issue: 3 )