By Topic

Analysis of thermal transient data with synthesized dynamic models for semiconductor devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sofia, J.W. ; Analysis Tech. Inc., Wakefield, MA, USA

A technique for synthesizing dynamic models comprised of discrete thermal resistances and capacitances directly from thermal step-response data on packaged semiconductor devices has been developed. Such models reveal the effective internal-package thermal resistances which comprise the overall junction-to-ambient or junction-to-case thermal resistance. These models can discriminate lumped internal constituent resistances including die/die-attachment spreading, internal package spreading, and case-to-air dissipation. The thermal step-response has been experimentally and analytically studied using the electrical method of junction temperature measurement. The interpretation and accuracy of these synthetic models have been investigated on a collection of test-case devices. Overshoot anomalies exhibited by junction-to-case thermal step responses have been examined experimentally and explained with synthetic model analysis. The application of synthetic models to computing thermal impedance for nonconstant or cyclic device-powering conditions is also presented

Published in:

Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on  (Volume:18 ,  Issue: 1 )