By Topic

Adaptive observers for active automotive suspensions: theory and experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rajamani, R. ; Dept. of Mech. Eng., California Univ., Berkeley, CA, USA ; Hedrick, J.K.

An adaptive observer is developed for a class of nonlinear systems. Conditions for convergence of state and parameter estimates are presented. The developed theory is used for observer-based parameter identification in the active suspension system of an automobile. A realistic model of the suspension system incorporating the dynamics of the hydraulic actuator is used. The observer is used to adapt on dry friction which is usually present in significant magnitudes in hydraulic actuators. The observer can also be used to adapt on spring stiffnesses, viscous damping and hydraulic bulk modulus. A special adaptive observer is proposed for identification of the sprung mass of the automobile. Since the sprung mass depends on the number of passengers and the load on the automobile, it needs to be regularly updated. The adaptive observers use measurements from two accelerometers and an LVDT. They yield good experimental performance when implemented on a half-car suspension test rig

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:3 ,  Issue: 1 )