By Topic

Cylinder pressure and combustion heat release estimation for SI engine diagnostics using nonlinear sliding observers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yaojung Shiao ; Dept. of Mech. Eng., Wisconsin Univ., Madison, WI, USA ; J. J. Moskwa

Cylinder pressure is an important parameter in engine combustion analysis or engine diagnosis. An approach is introduced to estimate cylinder pressure and combustion heat release in multicylinder SI engines based solely on engine speed measurements. Because of the nonlinear nature of engines, this estimation employs a nonlinear observer: the sliding observer. In many applications, cylinder pressure is critical for control or engine monitoring systems. Researchers have pursued various approaches to obtain the desired cylinder pressure directly or indirectly. However, these approaches vary in cost, reliability, robustness, accuracy and convenience. The use of nonlinear sliding observers in pressure and combustion heat release estimation based on measurements of engine speed provides an accurate, low-cost, and reliable way to acquire these desired states. In this paper the estimation of cylinder pressures and combustion heat releases of a multicylinder SI engine is presented. Since a problem of system observability arises in pressure estimation when the cylinder piston moves to its TDC, means of reducing estimation errors in this condition are described. Finally, the applications of this approach in engine diagnostics are discussed

Published in:

IEEE Transactions on Control Systems Technology  (Volume:3 ,  Issue: 1 )