By Topic

A perceptually motivated three-component image model-Part I: description of the model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaonong Ran ; Dept. of Syst. Technol., Nat. Semicond. Corp., Santa Clara, CA, USA ; Farvardin, N.

Some psychovisual properties of the human visual system are discussed and interpreted in a mathematical framework. The formation of perception is described by appropriate minimization problems and the edge information is found to be of primary importance in visual perception. Having introduced the concept of edge strength, it is demonstrated that strong edges are of higher perceptual importance than weaker edges (textures). We have also found that smooth areas of an image influence our perception together with the edge information, and that this influence can be mathematically described via a minimization problem. Based on this study, we have proposed to decompose the image into three components: (i) primary, (ii) smooth, and (iii) texture, which contain, respectively, the strong edges, the background, and the textures. An algorithm is developed to generate the three-component image model, and an example is provided in which the resulting three components demonstrate the specific properties as expected. Finally, it is shown that the primary component provides a superior representation of the strong edge information as compared with the popular Laplacian-Gaussian operator edge extraction scheme

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 4 )