By Topic

Optimization by iterative improvement: an experimental evaluation on two-way partitioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Wei Yeh ; Dept. of Electr. Eng., Nat. Chung-Cheng Univ., Taiwan, China ; Chung-Kuan Cheng ; Lin, T.-T.Y.

Recently, Johnson et al. [1989] presented an excellent comparison of simulated annealing and Kernighan-Lin algorithms. However, their test beds were limited to random and geometric graphs. We present a complete evaluation by adding real circuitry into the test beds. A two-level partitioning algorithm called the primal-dual algorithm is also incorporated for comparison. We show that at least 500 runs are necessary to demonstrate the performance of the Fiduccia-Mattheyses algorithm, whereas traditional way of evaluation tends to underestimate. Nevertheless, our new results show that for two-way partitioning on real circuits, the primal-dual algorithm is, in general, a better choice than both the Fiduccia-Mattheyses algorithm and the simulated annealing algorithm. This conclusion is more likely to hold when the primal-dual algorithm is switched to a simpler mode

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )