By Topic

A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
De Pierro, A.R. ; Dept. Appl. Math., State Univ. of Campinas, Brazil

The maximum likelihood (ML) expectation maximization (EM) approach in emission tomography has been very popular in medical imaging for several years. In spite of this, no satisfactory convergent modifications have been proposed for the regularized approach. Here, a modification of the EM algorithm is presented. The new method is a natural extension of the EM for maximizing likelihood with concave priors. Convergence proofs are given

Published in:

Medical Imaging, IEEE Transactions on  (Volume:14 ,  Issue: 1 )